
www.tasrieit.com

DevOps, Kubernetes & Cloud Consulting

The 10-Layer Kubernetes

Monitoring Checklist
The exact framework we use when auditing monitoring setups for

clients running Kubernetes in production.

By Amjad Syed | Founder & CEO, Tasrie IT Services

1 System & Infrastructure

Is the underlying infrastructure healthy?

CPU usage and load average

Memory usage and available memory

Disk usage and disk I/O

Network I/O

Node up/down status

Pod up/down status & restart counts

CrashLoopBackOff alerts

OOMKilled alerts

ImagePullBackOff alerts

Pending/Evicted pod alerts

Tools: Prometheus + Node Exporter, kube-state-metrics

https://tasrieit.com/

2 Application Performance

Is the code behaving correctly?

Response times per endpoint (p50, p95, p99)

Error rates (4xx, 5xx)

Transaction traces

Slow database queries

Slow external API calls

Tools: New Relic (free tier), Datadog APM, SigNoz (open source), Jaeger | Instrumentation:

OpenTelemetry

3 HTTP, API & Real User Monitoring

Can users actually reach and use the application?

Health check endpoint probes

Critical user flow probes (login, checkout)

Multi-region synthetic monitoring

API response schema validation

Core Web Vitals (LCP, FID, CLS)

Page load times by geography

JavaScript errors in production

Synthetic: Blackbox Exporter, Checkly | API: Runscope, Postman Monitors | RUM: Datadog RUM,

LogRocket, Sentry

4 Database

Is the database healthy and performing?

Active connections vs pool size

Query latency (p50, p95, p99)

Slow query logging (> 1s)

Replication lag

Lock waits and deadlocks

Disk and memory usage

Metric Warning Critical

Connection pool usage 70% 90%

Replication lag 10s 60s

Query latency p95 500ms 2s

Tools: PostgreSQL Exporter, MySQL Exporter, PgHero, PMM

5 Cache

Is the cache working effectively?

Hit/miss ratio (alert if < 80%)

Memory usage

Eviction rate

Connection count

Cache up/down status

Tools: Redis Exporter, Memcached Exporter, CloudWatch (ElastiCache)

6 Message Queues

Is async work getting processed?

Queue depth

Consumer lag (alert if > 1000 messages)

Messages per second (in/out)

Dead letter queue size (alert on any growth)

Queue up/down status

Tools: Kafka Exporter, Burrow, RabbitMQ Prometheus Plugin, SQS Exporter

7 Tracing Infrastructure

Is your observability infrastructure healthy?

Collector health and up/down status

Span ingestion rate

Storage backend health

Dropped spans (data loss indicator)

Tools: Built-in Jaeger/Tempo metrics, Prometheus

8 SSL & Certificates

Will certificates expire and cause an outage?

Certificate expiry monitoring

Alert at 30 days (Slack notification)

Alert at 14 days (Slack + ticket)

Alert at 7 days (Page on-call)

TLS version monitoring

Tools: Blackbox Exporter (probe_ssl_earliest_cert_expiry), cert-manager

9 External Dependencies

Are third-party services working?

Response times from external APIs

Error rates from external calls

Third-party status page monitoring

Payment provider health (Stripe, PayPal)

Auth service health (Auth0, Okta)

CDN health (Cloudflare, Fastly)

Tools: StatusGator, Instatus, Hyperping, your own probes

10 Log Patterns & Errors

What specific errors are happening?

Sudden spike in 5xx errors

Unusual increase in 4xx errors

"timeout" pattern alerts

"connection refused" pattern alerts

"deadlock" pattern alerts

"out of memory" pattern alerts

"connection pool exhausted" alerts

"circuit breaker open" alerts

Tools: Loki, Elasticsearch, CloudWatch Logs, Datadog Logs

Alerting Philosophy

Rule #1: Alert on symptoms, not causes. High CPU isn't always a problem. Users getting errors is

always a problem.

Page Someone

Users affected NOW. 5xx errors,

service down, data loss risk.

Channel: PagerDuty

Slack Notification

Needs attention today. Cert

expiring in 14 days, disk at 80%.

Channel: Slack

Just Log It

Interesting but not urgent. High

CPU without user impact.

Channel: Dashboard

Key principle: If an alert fires and you do nothing about it, delete the alert. Alert fatigue is real.

Common Mistakes to Avoid

✗ Only watching pod metrics - Node can be dying while pods look fine (disk full, network issues)

✗ No multi-region probes - App works from cluster but unreachable from the internet

✗ Missing RUM - 50ms API response, 4s page load. Users frustrated, you'd never know.

✗ Status 200 = healthy - API returns 200 with empty or wrong data. Add data assertions.

✗ No external dependency monitoring - Blame your app when Stripe is actually down

Quick Reference: Tool Stacks

Budget-Friendly (Open Source)

• Prometheus + Grafana (metrics)

• Loki (logs)

• Jaeger or Tempo (traces)

Enterprise Stack

• Datadog or New Relic (all-in-one)

• PagerDuty (alerting & on-call)

• Checkly (synthetic monitoring)

• Blackbox Exporter (synthetic)

• Alertmanager → Slack

• StatusGator (external deps)

• LogRocket (session replay)

Need Help Implementing This?

Book a Free Monitoring Audit Read the Full Guide

© 2026 Tasrie IT Services | tasrieit.com Monitoring Services Prometheus Consulting Grafana Support

We've implemented this exact framework for clients with 400+ servers.

Let us audit your monitoring setup and show you what you're missing.

https://tasrieit.com/30-minute-strategy-consultation
https://tasrieit.com/blog/10-layer-monitoring-framework-production-kubernetes-2026
https://tasrieit.com/web-application-monitoring
https://tasrieit.com/prometheus-consulting
https://tasrieit.com/grafana-support

